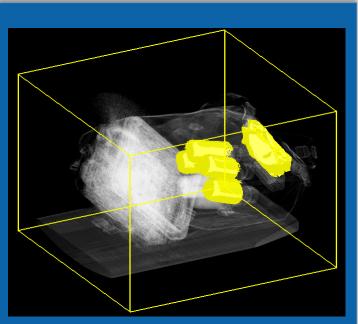
Coupled Segmentation of Industrial CT Images



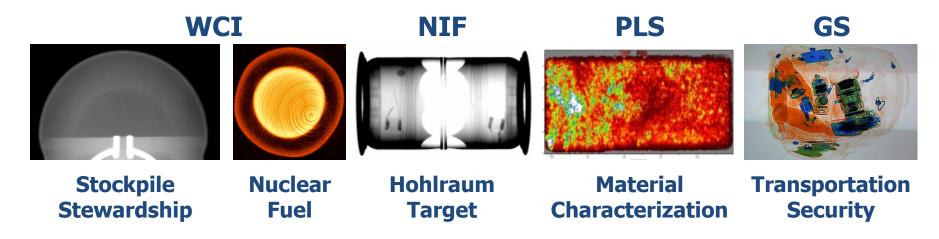
Peer-Timo Bremer, Kyle Champley, Jeff Kalmann, Hyojin Kim, Karina Bond, Jayaraman J. Thiagarajan, Eric Wang, Harry Martz



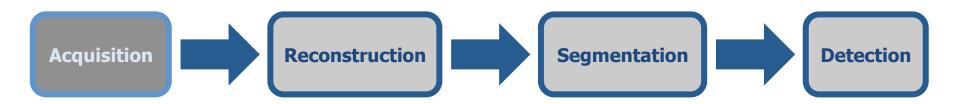
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-PRES-654650

Industrial X-Ray Image Segmentation is a Key Component in Many Applications Crucial to LLNL and National Security

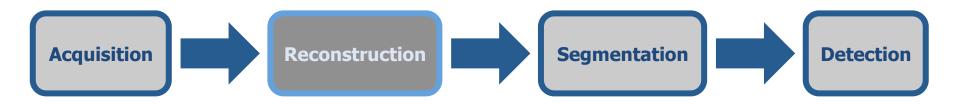
 Non-Destructive Evaluation (NDE) is an integral component in many of Livermore's mission critical areas:



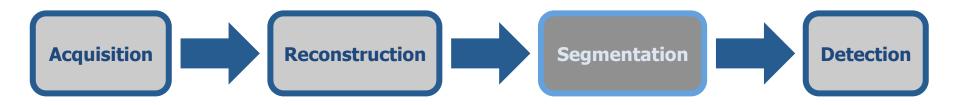
- Goal: Identify objects, materials, and/or features in a noisy, cluttered, and compromised environment
- Challenge: Current solutions are highly application dependent and often inadequate



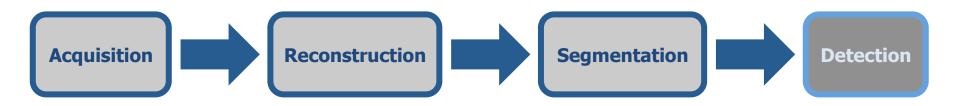
Data acquisition is limited by cost, time, energy spectrum, etc.



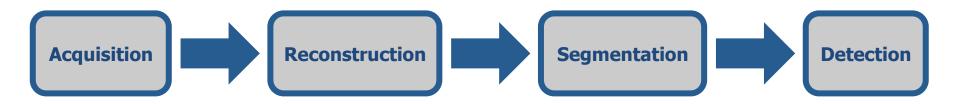
- Data acquisition is limited by cost, time, energy spectrum, etc.
- Artifacts in the reconstruction, e.g., streaks, cupping, beam hardening



- Data acquisition is limited by cost, time, energy spectrum, etc.
- Artifacts in the reconstruction, e.g., streaks, cupping, beam hardening
- Inaccurate segmentations, e.g., merged or split objects, partial volume, unreliable material estimation



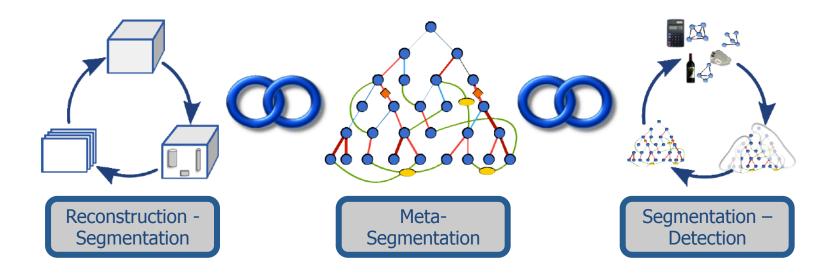
- Data acquisition is limited by cost, time, energy spectrum, etc.
- Artifacts in the reconstruction, e.g., streaks, cupping, beam hardening
- Inaccurate segmentations, e.g., merged or split objects, partial volume, unreliable material estimation
- Inconsistent detection causing both false positive and false negative results



- Data acquisition is limited by cost, time, energy spectrum, etc.
- Artifacts in the reconstruction, e.g., streaks, cupping, beam hardening
- Inaccurate segmentations, e.g., merged or split objects, partial volume, unreliable material estimation
- Inconsistent detection causing both false positive and false negative results

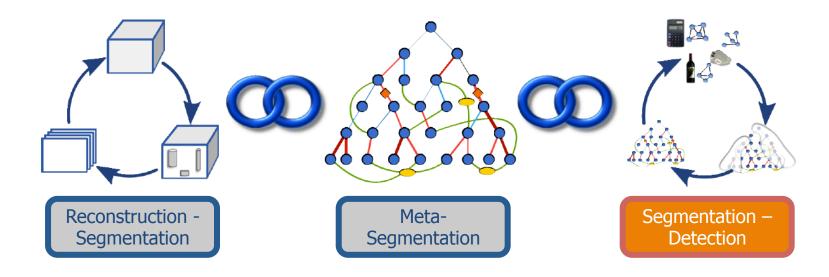
Current techniques tackle each stage independently

This Project Integrates the Pipeline by Focusing on Feedback Loops Between Stages



- Reconstruction Segmentation:
 - Partial segmentations can enhance the reconstruction
- Segmentation Detection:
 - Semantic knowledge can enhance the segmentation
 - Previous results can disambiguate difficult cases

This Project Integrates the Pipeline by Focusing on Feedback Loops Between Stages

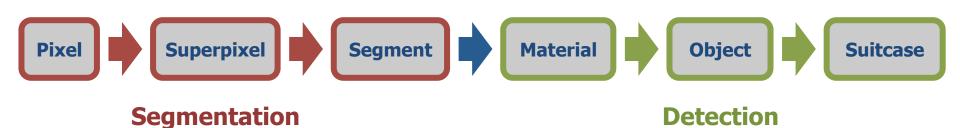


- Reconstruction Segmentation:
 - Partial segmentations can enhance the reconstruction
- Segmentation Detection:
 - Semantic knowledge can enhance the segmentation
 - Previous results can disambiguate difficult cases

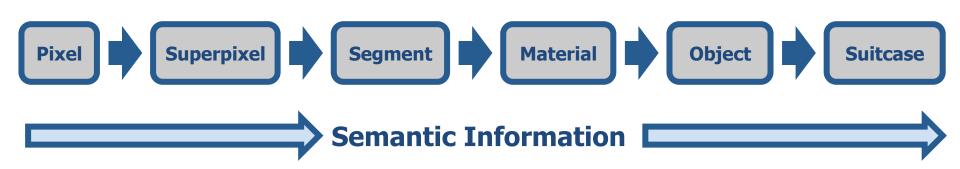
- Segmentation: Finding coherent regions in the image
 - Edge detection
 - Region growing or splitting
- Detection: Finding objects or configuration of objects
 - Semantic features, e.g., volume, shape, material
 - Classifiers based on training data

- Segmentation: Finding coherent regions in the image
 - Edge detection
 - Region growing or splitting
- Detection: Finding objects or configuration of objects
 - Semantic features, e.g., volume, shape, material
 - Classifiers based on training data
- Instead these stages simply represent a convenient separation of a continuous spectrum of techniques

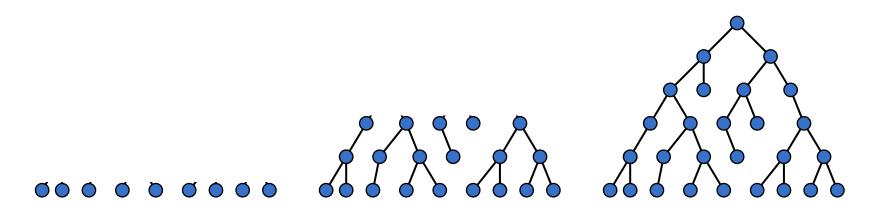
- Segmentation: Finding coherent regions in the image
 - Edge detection
 - Region growing or splitting
- Detection: Finding objects or configuration of objects
 - Semantic features, e.g., volume, shape, material
 - Classifiers based on training data
- Instead these stages simply represent a convenient separation of a continuous spectrum of techniques



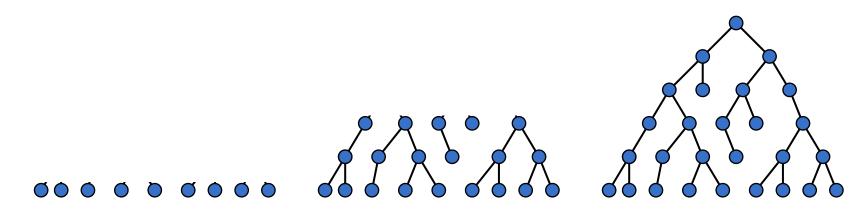
- Segmentation: Finding coherent regions in the image
 - Edge detection
 - Region growing or splitting
- Detection: Finding objects or configuration of objects
 - Semantic features, e.g., volume, shape, material
 - Classifiers based on training data
- Instead these stages simply represent a convenient separation of a continuous spectrum of techniques



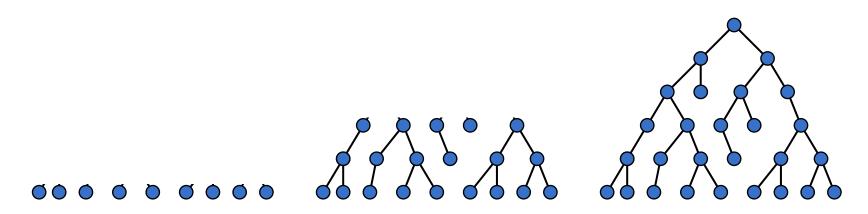
- Segmentation: Finding coherent regions in the image
 - Edge detection
 - Region growing or splitting
- Detection: Finding objects or configuration of objects
 - Semantic features, e.g., volume, shape, material
 - Classifiers based on training data
- Instead these stages simply represent a convenient separation of a continuous spectrum of techniques



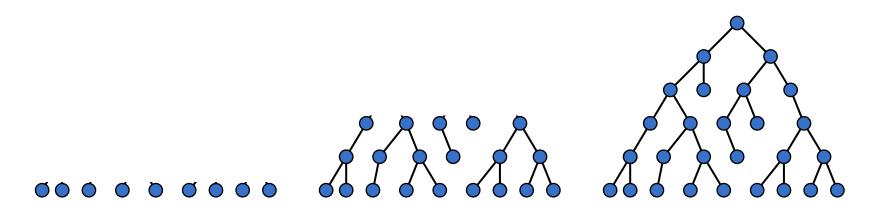
- Challenges:
 - Feature selection: How to determine candidate merges
 - Merge order: Which elements to merge first
 - Stopping criterion: What defines a segment



- Challenges:
 - Feature selection: How to determine candidate merges
 - Merge order: Which elements to merge first
 - Stopping criterion: What defines a segment



- Challenges:
 - Feature selection: How to determine candidate merges
 - Merge order: Which elements to merge first
 - Stopping criterion: What defines a segment
- Problems with merge order and stopping criteria are due to missing semantic information leading to irreversible errors in the hierarchy

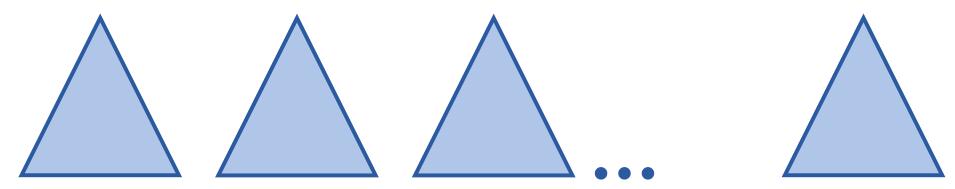


- Challenges:
 - Feature selection: How to determine candidate merges
 - Merge order: Which elements to merge first
 - Stopping criterion: What defines a segment
- Problems with merge order and stopping criteria are due to missing semantic information leading to irreversible errors in the hierarchy

Avoid binding choices by exploring all potential hierarchies

Create Multiple Randomized Hierarchies to Explore the Space of Potentially Useful Segmentations

Randomize the merge order to account for unavoidable mistakes



- Choose the "best" segments (not segmentations) based on:
 - Consensus
 - Labeled training data
 - Unsupervised learning

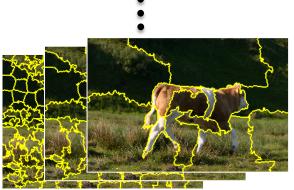
Multi-Hierarchy Consensus of Natural Images Produces Superior Results Across A Wide Range of Scenes

Building Multiple Hierarchies

Consensus Inference

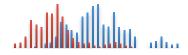
Segmentation using Graph Cuts





Weighted Consensus from Multiple Hierarchies

Model Foreground and Background Regions of Interest



Guided Segmentation of Luggage Scans Using Training Data of Multiple Threat Classes

- Find and classify multiple different threats in a collection of bags scanned by the ALERT Center at Northeastern University
- Data: ~100 Scans containing:
 - Background: clothes, water, books, etc.
 - Threats: Saline solution, modeling clay, rubber sheets
 - Pseudo-threats: threat materials in small quantities
- Challenge: Improve segmentation of threat objects using labeled training data

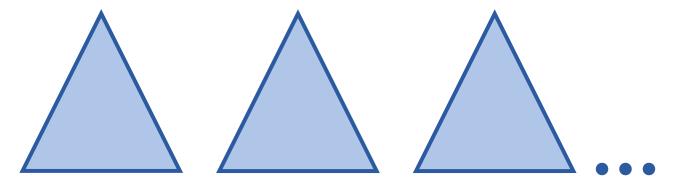
Guided Segmentation of Luggage Scans Using Training Data of Multiple Threat Classes

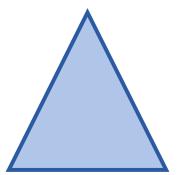
- Find and classify multiple different threats in a collection of bags scanned by the ALERT Center at Northeastern University
- Data: ~100 Scans containing:
 - Background: clothes, water, books, etc.
 - Threats: Saline solution, modeling clay, rubber sheets
 - Pseudo-threats: threat materials in small quantities
- Challenge: Improve segmentation of threat objects using labeled training data

Can you better segment a water bottle because you have seen other bottles

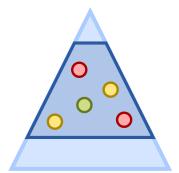
 Train threat classifier using labeled data and a set of custom designed features, e.g., histograms, shape, volume, etc.

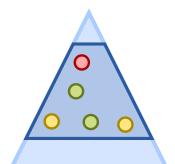
- Train threat classifier using labeled data and a set of custom designed features, e.g., histograms, shape, volume, etc.
- Construct multiple hierarchical segmentations by randomizing the merge order

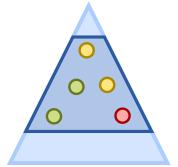


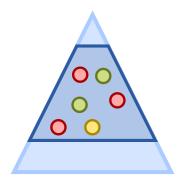


- Train threat classifier using labeled data and a set of custom designed features, e.g., histograms, shape, volume, etc.
- Construct multiple hierarchical segmentations by randomizing the merge order
- Classify subset segments into four classes (saline, clay, rubber, nt)

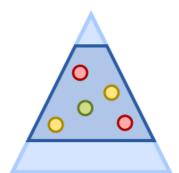


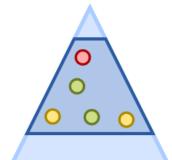


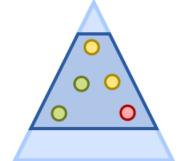


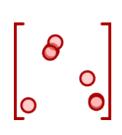


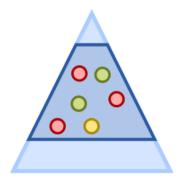
- Train threat classifier using labeled data and a set of custom designed features, e.g., histograms, shape, volume, etc.
- Construct multiple hierarchical segmentations by randomizing the merge order
- Classify subset segments into four classes (saline, clay, rubber, nt)
- Build consensus segmentation within each class to construct a perobject "best" segmentation

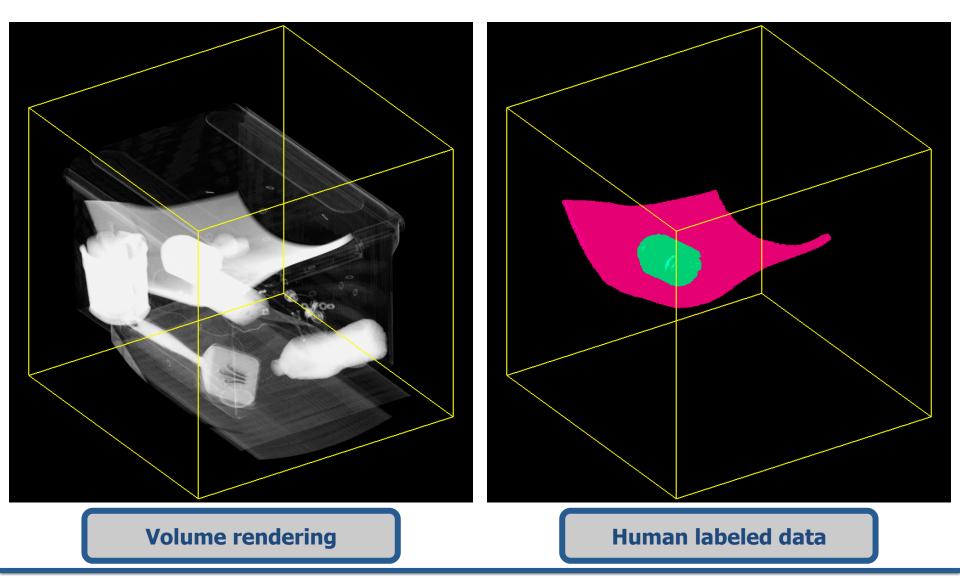


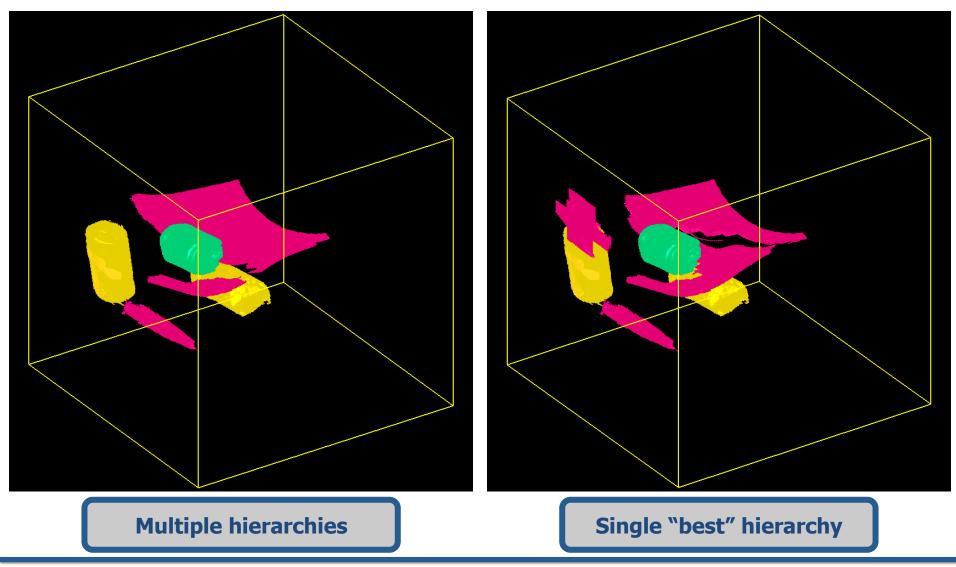


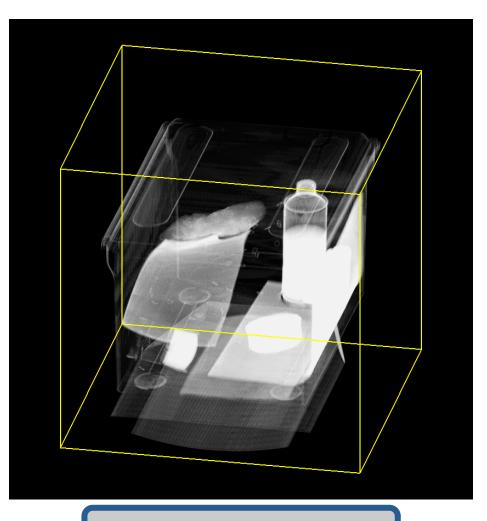


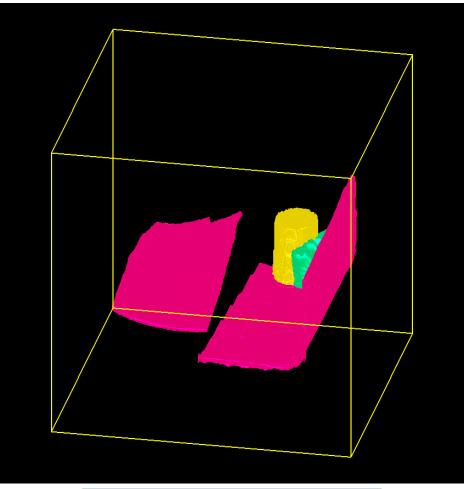






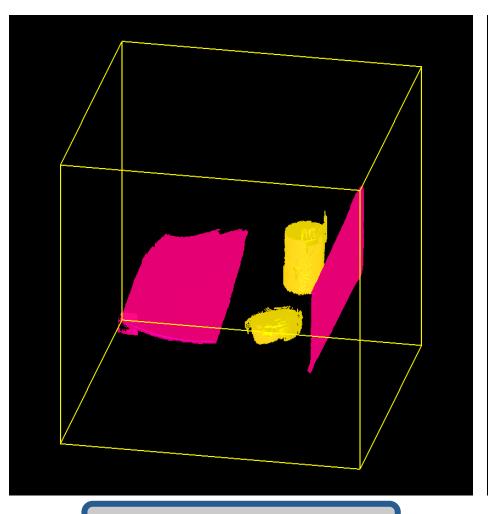


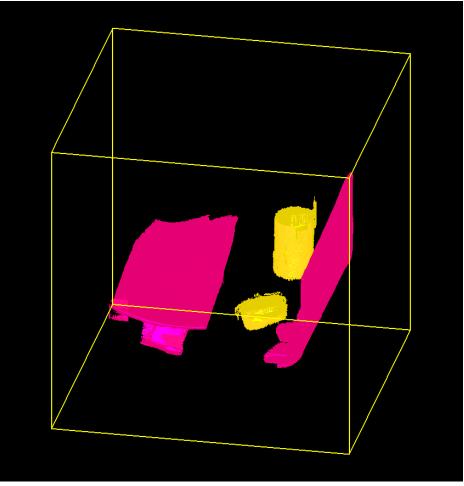




Volume rendering

Human labeled data





Multiple hierarchies

Single "best" hierarchy

Segmentations based on Multiple Hierarchies Provide a Flexible Framework to Integrate Semantic Information

- Independent of the specific low or high level features
- Easy to construct though potentially expensive
- Expected to be robust against noise and artifacts
- Various opportunities to integrate semantic knowledge, i.e., to bridge the gap between segmentation and detection
- Promising results for natural images and luggage scans

